题目内容
计算: .
如图,如果要使?ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________.
如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:
(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;
(2)求出点P在CD上运动时S与t之间的函数表达式;
(3)当t为何值时,三角形APD的面积为10 cm2?
如图,直线AB与y轴交于点A,与x轴交于点B,点A的纵坐标、点B的横坐标如图所示.
(1)求直线AB对应的函数表达式;
(2)点P在直线AB上,是否存在点P使得三角形AOP的面积为1,如果存在,求出所有满足条件的点P的坐标.
已知4x-3y-6z=0,x+2y-7z=0,且xyz≠0,求的值.
要使式子从左到右变形成立,x应满足的条件是( )
A. x>-2 B. x=-2 C. x<-2 D. x≠-2
无论a取何值,下列分式总有意义的是( )
A. B. C. D.
如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识为( )
A. 垂线段最短 B. 经过一点有无数条直线
C. 经过两点,有且仅有一条直线 D. 两点之间,线段最短
扬州市为打造“绿色城市”降低空气中pm2.5的浓度,积极投入资金进行园林绿化工程,已知2014年投资1000万元,预计2016年投资1210万元.若这两年内平均每年投资增长的百分率相同.
(1)求平均每年投资增长的百分率;
(2)经过评估,空气中pm2.5的浓度连续两年较上年下降10%,则两年后pm2.5的浓度比最初下降了百分之几?