搜索
题目内容
11、已知直线yy′⊥xx′,垂足为O,则图形①与图形
②
成轴对称.
试题答案
相关练习册答案
分析:
直线两侧图形必须完全重合才能判定是轴对称图形.
解答:
解:观察图形可知,图形①和图形②是关于yy′对称的.故填②.
点评:
此题比较简单,考查学生的观察能力,以及对轴对称知识的理解和运用.
练习册系列答案
轻松课堂单元测试AB卷系列答案
南通小题课时提优作业本系列答案
交大之星课后精练卷系列答案
本土教辅名校学案课时全练系列答案
名校学案高效课时通系列答案
小题狂做系列答案
桂壮红皮书单元达标卷系列答案
一课一案创新导学系列答案
课堂制胜课时作业系列答案
名师计划高效课堂系列答案
相关题目
(2011•新华区一模)我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是
4
4
;
(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求
x
2
+9
+
y
2
+25
的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5
;
②在AB上取一点P,可设AP=
x
x
,BP=
y
y
;
③
x
2
+9
+
y
2
+25
的最小值即为线段
PC
PC
和线段
PD
PD
长度之和的最小值,最小值为
10
10
.
已知直线yy′⊥xx′,垂足为O,则图形①与图形 ________成轴对称.
已知直线yy′⊥xx′,垂足为O,则图形①与图形( )成轴对称。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案