ÌâÄ¿ÄÚÈÝ
ÔĶÁÏÂÃæµÄ²ÄÁÏ
Àý1£ºÒÑÖªº¯Êýy=3x-1
½â£ºÓÉy=3x-1£¬¿ÉµÃx=
£¬ËùÒÔÔº¯Êýy=3x-1µÄ·´º¯ÊýÊÇy=
Àý2£ºÒÑÖªº¯Êýy=
£¨x¡Ù1£©
½â£ºÓÉy=
£¬¿ÉµÃx=
£¬ËùÒÔÔº¯Êýy=
µÄ·´º¯ÊýÊÇy=
£¨x¡Ù2£©
ÔÚÒÔÉÏÁ½ÀýÖУ¬ÔÚÏàÓ¦µÄÌõ¼þÏ£¬Ò»¸öÔº¯ÊýÓз´º¯Êýʱ£¬Ôº¯ÊýÖÐ×Ô±äÁ¿xµÄȡֵ·¶Î§¾ÍÊÇËüµÄ·´º¯ÊýÖÐyµÄº¯Êýֵȡֵ·¶Î§£¬Ôº¯ÊýÖк¯ÊýÖµyµÄȡֵ·¶Î§¾ÍÊÇËüµÄ·´º¯ÊýµÄ×Ô±äÁ¿xȡֵ·¶Î§£¬Í¨¹ýÒÔÉÏÄÚÈÝÍê³ÉÏÂÃæÈÎÎñ£º
£¨1£©Çóº¯Êýy=-2x+3µÄ·´º¯Êý£®
£¨2£©º¯Êýy=
µÄ·´º¯ÊýµÄº¯ÊýÖµµÄȡֵ·¶Î§Îª
A£®y¡Ù1 B£®y¡Ù-1 C£®y¡Ù-2 D£®y¡Ù2£®
£¨3£©ÏÂÁк¯ÊýÖз´º¯ÊýÊÇËü±¾ÉíµÄÊÇ
¢Ùy=x ¢Úy=x+1 ¢Ûy=-x+1 ¢Üy=
¢Ýy=
(x¡Ù1)£®
Àý1£ºÒÑÖªº¯Êýy=3x-1
½â£ºÓÉy=3x-1£¬¿ÉµÃx=
| y+1 |
| 3 |
| x+1 |
| 3 |
Àý2£ºÒÑÖªº¯Êýy=
| x+3 |
| x-1 |
½â£ºÓÉy=
| 2x+3 |
| x-1 |
| y+3 |
| y-2 |
| 2x+3 |
| x-1 |
| x+3 |
| x-2 |
ÔÚÒÔÉÏÁ½ÀýÖУ¬ÔÚÏàÓ¦µÄÌõ¼þÏ£¬Ò»¸öÔº¯ÊýÓз´º¯Êýʱ£¬Ôº¯ÊýÖÐ×Ô±äÁ¿xµÄȡֵ·¶Î§¾ÍÊÇËüµÄ·´º¯ÊýÖÐyµÄº¯Êýֵȡֵ·¶Î§£¬Ôº¯ÊýÖк¯ÊýÖµyµÄȡֵ·¶Î§¾ÍÊÇËüµÄ·´º¯ÊýµÄ×Ô±äÁ¿xȡֵ·¶Î§£¬Í¨¹ýÒÔÉÏÄÚÈÝÍê³ÉÏÂÃæÈÎÎñ£º
£¨1£©Çóº¯Êýy=-2x+3µÄ·´º¯Êý£®
£¨2£©º¯Êýy=
| x-2 |
| x+1 |
B
B
A£®y¡Ù1 B£®y¡Ù-1 C£®y¡Ù-2 D£®y¡Ù2£®
£¨3£©ÏÂÁк¯ÊýÖз´º¯ÊýÊÇËü±¾ÉíµÄÊÇ
¢Ù¢Ü¢Ý
¢Ù¢Ü¢Ý
£¨ÌîÐòºÅ¼´¿É£©¢Ùy=x ¢Úy=x+1 ¢Ûy=-x+1 ¢Üy=
| 1 |
| x |
| x+1 |
| x-1 |
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒ⣬ÏÈÓÃy±íʾ³öx£¬È»ºó¼´¿ÉµÃµ½·´º¯Êý£»
£¨2£©¸ù¾ÝÌâÄ¿ÐÅÏ¢£¬Çó³öÔº¯ÊýµÄ×Ô±äÁ¿µÄȡֵ·¶Î§¼´Îª·´º¯ÊýµÄº¯ÊýÖµµÄ·¶Î§£»
£¨3£©¸ù¾Ý·´º¯ÊýµÄ¶¨Òå·Ö±ðÇó³ö¸÷СÌâµÄ·´º¯Êý£¬¼´¿ÉµÃ½â£®
£¨2£©¸ù¾ÝÌâÄ¿ÐÅÏ¢£¬Çó³öÔº¯ÊýµÄ×Ô±äÁ¿µÄȡֵ·¶Î§¼´Îª·´º¯ÊýµÄº¯ÊýÖµµÄ·¶Î§£»
£¨3£©¸ù¾Ý·´º¯ÊýµÄ¶¨Òå·Ö±ðÇó³ö¸÷СÌâµÄ·´º¯Êý£¬¼´¿ÉµÃ½â£®
½â´ð£º½â£º£¨1£©ÓÉy=-2x+3µÃ£¬x=
£¬
ËùÒÔ£¬º¯Êýy=-2x+3µÄ·´º¯ÊýÊÇy=
£»
£¨2£©Çóº¯Êýy=
µÄ×Ô±äÁ¿µÄȡֵ·¶Î§£¬
x+1¡Ù0£¬
½âµÃx¡Ù-1£¬
ËùÒÔ£¬º¯Êýy=
µÄ·´º¯ÊýµÄº¯ÊýÖµµÄȡֵ·¶Î§Îªy¡Ù-1£»
£¨3£©¢Ùy=xµÄ·´º¯ÊýΪy=x£»
¢Úy=x+1µÄ·´º¯ÊýΪy=x-1£»
¢Ûy=-x+1µÄ·´º¯ÊýΪy=1-x£»
¢Üy=
µÄ·´º¯ÊýΪy=
£»
¢Ýy=
£¨x¡Ù1£©µÄ·´º¯ÊýΪy=
£»
ËùÒÔ£¬·´º¯ÊýÊÇËü±¾ÉíµÄÓТ٢ܢݣ®
¹Ê´ð°¸Îª£º£¨2£©B£¬£¨3£©¢Ù¢Ü¢Ý£®
| 3-y |
| 2 |
ËùÒÔ£¬º¯Êýy=-2x+3µÄ·´º¯ÊýÊÇy=
| 3-x |
| 2 |
£¨2£©Çóº¯Êýy=
| x-2 |
| x+1 |
x+1¡Ù0£¬
½âµÃx¡Ù-1£¬
ËùÒÔ£¬º¯Êýy=
| x-2 |
| x+1 |
£¨3£©¢Ùy=xµÄ·´º¯ÊýΪy=x£»
¢Úy=x+1µÄ·´º¯ÊýΪy=x-1£»
¢Ûy=-x+1µÄ·´º¯ÊýΪy=1-x£»
¢Üy=
| 1 |
| x |
| 1 |
| x |
¢Ýy=
| x+1 |
| x-1 |
| x+1 |
| x-1 |
ËùÒÔ£¬·´º¯ÊýÊÇËü±¾ÉíµÄÓТ٢ܢݣ®
¹Ê´ð°¸Îª£º£¨2£©B£¬£¨3£©¢Ù¢Ü¢Ý£®
µãÆÀ£º±¾Ì⿼²éÁ˺¯Êý¹ØÏµÊ½£¬º¯Êý×Ô±äÁ¿µÄȡֵ·¶Î§£¬¶Á¶®ÌâÄ¿ÐÅÏ¢£¬Àí½â·´º¯ÊýµÄ¶¨ÒåÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿