ÌâÄ¿ÄÚÈÝ

ÔĶÁÏÂÃæµÄ²ÄÁÏ
Àý1£ºÒÑÖªº¯Êýy=3x-1
½â£ºÓÉy=3x-1£¬¿ÉµÃx=
y+1
3
£¬ËùÒÔÔ­º¯Êýy=3x-1µÄ·´º¯ÊýÊÇy=
x+1
3

Àý2£ºÒÑÖªº¯Êýy=
x+3
x-1
£¨x¡Ù1£©
½â£ºÓÉy=
2x+3
x-1
£¬¿ÉµÃx=
y+3
y-2
£¬ËùÒÔÔ­º¯Êýy=
2x+3
x-1
µÄ·´º¯ÊýÊÇy=
x+3
x-2
£¨x¡Ù2£©
ÔÚÒÔÉÏÁ½ÀýÖУ¬ÔÚÏàÓ¦µÄÌõ¼þÏ£¬Ò»¸öÔ­º¯ÊýÓз´º¯Êýʱ£¬Ô­º¯ÊýÖÐ×Ô±äÁ¿xµÄȡֵ·¶Î§¾ÍÊÇËüµÄ·´º¯ÊýÖÐyµÄº¯Êýֵȡֵ·¶Î§£¬Ô­º¯ÊýÖк¯ÊýÖµyµÄȡֵ·¶Î§¾ÍÊÇËüµÄ·´º¯ÊýµÄ×Ô±äÁ¿xȡֵ·¶Î§£¬Í¨¹ýÒÔÉÏÄÚÈÝÍê³ÉÏÂÃæÈÎÎñ£º
£¨1£©Çóº¯Êýy=-2x+3µÄ·´º¯Êý£®
£¨2£©º¯Êýy=
x-2
x+1
µÄ·´º¯ÊýµÄº¯ÊýÖµµÄȡֵ·¶Î§Îª
B
B

A£®y¡Ù1  B£®y¡Ù-1  C£®y¡Ù-2  D£®y¡Ù2£®
£¨3£©ÏÂÁк¯ÊýÖз´º¯ÊýÊÇËü±¾ÉíµÄÊÇ
¢Ù¢Ü¢Ý
¢Ù¢Ü¢Ý
£¨ÌîÐòºÅ¼´¿É£©
 ¢Ùy=x ¢Úy=x+1 ¢Ûy=-x+1 ¢Üy=
1
x
 ¢Ýy=
x+1
x-1
(x¡Ù1)
£®
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒ⣬ÏÈÓÃy±íʾ³öx£¬È»ºó¼´¿ÉµÃµ½·´º¯Êý£»
£¨2£©¸ù¾ÝÌâÄ¿ÐÅÏ¢£¬Çó³öÔ­º¯ÊýµÄ×Ô±äÁ¿µÄȡֵ·¶Î§¼´Îª·´º¯ÊýµÄº¯ÊýÖµµÄ·¶Î§£»
£¨3£©¸ù¾Ý·´º¯ÊýµÄ¶¨Òå·Ö±ðÇó³ö¸÷СÌâµÄ·´º¯Êý£¬¼´¿ÉµÃ½â£®
½â´ð£º½â£º£¨1£©ÓÉy=-2x+3µÃ£¬x=
3-y
2
£¬
ËùÒÔ£¬º¯Êýy=-2x+3µÄ·´º¯ÊýÊÇy=
3-x
2
£»

£¨2£©Çóº¯Êýy=
x-2
x+1
µÄ×Ô±äÁ¿µÄȡֵ·¶Î§£¬
x+1¡Ù0£¬
½âµÃx¡Ù-1£¬
ËùÒÔ£¬º¯Êýy=
x-2
x+1
µÄ·´º¯ÊýµÄº¯ÊýÖµµÄȡֵ·¶Î§Îªy¡Ù-1£»

£¨3£©¢Ùy=xµÄ·´º¯ÊýΪy=x£»
¢Úy=x+1µÄ·´º¯ÊýΪy=x-1£»
¢Ûy=-x+1µÄ·´º¯ÊýΪy=1-x£»
¢Üy=
1
x
µÄ·´º¯ÊýΪy=
1
x
£»
¢Ýy=
x+1
x-1
£¨x¡Ù1£©µÄ·´º¯ÊýΪy=
x+1
x-1
£»
ËùÒÔ£¬·´º¯ÊýÊÇËü±¾ÉíµÄÓТ٢ܢݣ®
¹Ê´ð°¸Îª£º£¨2£©B£¬£¨3£©¢Ù¢Ü¢Ý£®
µãÆÀ£º±¾Ì⿼²éÁ˺¯Êý¹ØÏµÊ½£¬º¯Êý×Ô±äÁ¿µÄȡֵ·¶Î§£¬¶Á¶®ÌâÄ¿ÐÅÏ¢£¬Àí½â·´º¯ÊýµÄ¶¨ÒåÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø