题目内容
分析:连接BE,根据矩形的对边平行可得AD∥BC,根据两直线平行,同旁内角互补可得∠AEF=120°,两直线平行,内错角相等可得∠DEF=60°,再根据翻折变换的性质求出∠BEF=∠DEF,然后求出∠AEB=60°,再解直角三角形求出AB,然后根据矩形的面积公式列式计算即可得解.
解答:
解:如图,连接BE,
在矩形ABCD中,AD∥BC,
∴∠AEF=180°-∠EFB=180°-60°=120°,
∠DEF=∠EFB=60°,
∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,
∴∠BEF=∠DEF=60°,
∴∠AEB=∠AEF-∠BEF=120°-60°=60°,
在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2
,
∵AE=2,DE=6,
∴AD=AE+DE=2+6=8,
∴矩形ABCD的面积=AB•AD=2
×8=16
.
故选D.
在矩形ABCD中,AD∥BC,
∴∠AEF=180°-∠EFB=180°-60°=120°,
∠DEF=∠EFB=60°,
∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,
∴∠BEF=∠DEF=60°,
∴∠AEB=∠AEF-∠BEF=120°-60°=60°,
在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2
| 3 |
∵AE=2,DE=6,
∴AD=AE+DE=2+6=8,
∴矩形ABCD的面积=AB•AD=2
| 3 |
| 3 |
故选D.
点评:本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.
练习册系列答案
相关题目