题目内容
在一个不透明的盒子里,装有6个写有1、2、3、4、5、6数字的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下其数字为一个点的横坐标,然后放回盒子,摇匀后再随机取出一个小球,记下其数字为这个点的纵坐标.
(1)请用画树状图法或列表法表示此点坐标的所有可能结果;
(2)求此点在双曲线
图象上的概率.
解:(1)画树状图如下:

共有36种可能情况;
(2)∵y=
,
∴xy=6,
所以,函数图象上的点有(1,6),(2,3),(3,2),(6,1),共4个,
P=
=
.
分析:(1)根据题意画出树状图,即可得解;
(2)根据反比例函数图象上点的坐标特征求出xy的关系,然后判断出在函数图象上的点的坐标,再根据概率公式进行计算即可得解.
点评:本题用到的知识点为:概率=所求情况数与总情况数之比.
共有36种可能情况;
(2)∵y=
∴xy=6,
所以,函数图象上的点有(1,6),(2,3),(3,2),(6,1),共4个,
P=
分析:(1)根据题意画出树状图,即可得解;
(2)根据反比例函数图象上点的坐标特征求出xy的关系,然后判断出在函数图象上的点的坐标,再根据概率公式进行计算即可得解.
点评:本题用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目
在一个不透明的盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,从盒子里任意摸出1个球,摸到红球的概率是
( )
( )
A、
| ||
B、
| ||
C、
| ||
D、
|