题目内容
下列各式中,满足完全平方公式进行因式分解的是( )
A. 4x2﹣12xy+9y2 B. 2x2+4x+1 C. 2x2+4xy+y2 D. x2﹣y2+2xy
若=2,则=_____.
对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为_____.
如图,在△ABC中,AC=5,BC=12,AB=13,D是BC的中点,求AD的长和△ABD的面积.
如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为_____.
下列二次根式中可以和相加合并的是( )
A. B. C. D.
阅读并回答问题.
求一元二次方程ax2+bx+c=0(a≠0)的根(用配方法).
【解析】ax2+bx+c=0,
∵a≠0,∴x2+x+=0,第一步
移项得:x2+x=﹣,第二步
两边同时加上()2,得x2+x+(____)2=﹣+()2,第三步
整理得:(x+)2=直接开方得x+=±,第四步
∴x=,
∴x1=,x2=,第五步
上述解题过程是否有错误?若有,说明在第几步,指明产生错误的原因,写出正确的过程;若没有,请说明上述解题过程所用的方法.
等边三角形的周长为18,则它的内切圆半径是( )
某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.
(1)求修建一个足球场和一个篮球场各需多少万元?
(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?