题目内容
分析:已知DE垂直平分斜边AB可求得AE=BE,∠EAB=∠EBA.易求出∠AEB.
解答:解:∵DE垂直平分斜边AB,
∴AE=BE,∴∠EAB=∠EBA.
∵∠CAB=∠B+30°,
∠CAB=∠CAE+∠EAB,
∴∠CAE=30°.
∵∠C=90°,
∴∠AEC=60°.
∴∠AEB=120°
∴AE=BE,∴∠EAB=∠EBA.
∵∠CAB=∠B+30°,
∠CAB=∠CAE+∠EAB,
∴∠CAE=30°.
∵∠C=90°,
∴∠AEC=60°.
∴∠AEB=120°
点评:本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识,注意角与角之间的转换.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |