题目内容

【题目】如图,两个可以自由转动的均匀转盘A、B,分别被分成4等分和3等分,并在每份内均标有数字.小花为甲、乙两人设计了一个游戏规则如下:同时自由转动转盘A、B;两个转盘停止后,(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),将两个指针所指份内的两个数字相乘,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,则乙胜.但小强认为这样的规则是不公平的.

(1)请你用一种合适的方法(例如画树状图、列表)帮忙小强说明理由;

(2)请你设计一个公平的规则,并说明理由.

【答案】(1)甲获胜的机会大(2)公平的游戏规则不唯一

【解析】试题分析:(1)用列举法表示出所有可能的结果,根据所得结果分别计算积为偶数与积为奇数的概率,即可帮助小强说明理由

(2)根据(1)中的结果制定公平的游戏规则即可(答案不唯一)

试题解析:(1)列表如下:

B A

1

2

3

4

1

1×1=1

1×2=2

1×3=3

1×4=4

2

2×1=2

2×2=4

2×3=6

2×4=8

3

3×1=3

3×2=6

3×3=9

3×4=12

因为P(积为奇数)=

P(积为偶数)=

所以甲获胜的机会大;

(2)公平的游戏规则不唯一,例如:

如果自由转动两个转盘,转盘停止后,指针所指的两数之积为3的倍数时,甲获胜,否则乙获胜,

此时两人获胜的可能性均为

练习册系列答案
相关题目

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网