题目内容
某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.
![]()
(1)将图补充完整;
(2)本次共抽取员工 _________ 人,每人所创年利润的众数是 _________ ,平均数是 _________ ;
(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?
考点:
条形统计图;用样本估计总体;扇形统计图.
分析:
(1)求出3万元的员工的百分比,5万元的员工人数及8万元的员工人数,再据数据制图.
(2)利用3万元的员工除以它的百分比就是抽取员工总数,利用定义求出众数及平均数.
(3)优秀员工=公司员工×10万元及(含10万元)以上优秀员工的百分比.
解答:
解:(1)3万元的员工的百分比为:1﹣36%﹣20%﹣12%﹣24%=8%,
抽取员工总数为:4÷8%=50(人)
5万元的员工人数为:50×24%=12(人)
8万元的员工人数为:50×36%=18(人)
![]()
(2)抽取员工总数为:4÷8%=50(人)
每人所创年利润的众数是 8万元,
平均数是:
(3×4+5×12+8×18+10×10+15×6)=8.12万元
故答案为:50,8万元,8.12万元.
(3)1200×
=384(人)
答:在公司1200员工中有384人可以评为优秀员工.
点评:
此题考查了条形统计图,扇形统计图,以及加权平均数的计算公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是( )
![]()
|
| A. | (﹣8,0) | B. | (0,8) | C. | (0,8 | D. | (0,16) |