题目内容
如图,锐角三角形ABC的边AB,AC上的高线CE和BF相交于点D,请写出图中的两对相似三角形: ▲ (用相似符号连接).
如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为 .
某校组织一些学生种一批树,若每人种10棵,则剩6棵未种;若每人种12棵,则缺6棵树苗.设有x棵树苗,则可列方程__________________.
如图,的顶点在抛物线上,将绕点顺时针旋转,得到,边与该抛物线交于点,则点的坐标为( )
A. B. C. D.
(1)尝试:如图①,已知A,E,B三点在同一直线上,且∠A=∠B=∠DEC=90°,求证:△ADE∽△BEC;
(2)一名同学在尝试了上题后还发现:如图②、图③,只要A,E,B三点在同一直线上,且∠A=∠B=∠DEC,则(1)中的结论总成立.你同意吗?请选择其中之一说明理由.
如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.
(1)求证:四边形BCDE是平行四边形;
(2)已知图中阴影部分面积为6π,求⊙O的半径r.
如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=______度.
有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.
(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;
(2)求这三条线段能组成直角三角形的概率.
把下列各数填在相应的横线上.
,-,,0.5,2π,3.14159265,-|-|,1.3030030003…(每相邻两个3之间依次多一个0).
(1)有理数:______________________________________________________;
(2)无理数:_________________________________________________________;
(3)正实数:__________________________________________________________;
(4)负实数:__________________________________________________________.