题目内容
【题目】如图,AB为⊙O的直径,点D为AB下方⊙O上一点,点C为弧ABD的中点,连接CD,CA.
(1)求证:∠ABD=2∠BDC;
(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;
(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.
![]()
【答案】(1)证明见解析;(2)见解析;(3)
.
【解析】
(1)连接AD,如图1,设∠BDC=α,∠ADC=β,根据圆周角定理得到∠CAB=∠BDC=α,由AB为⊙O直径,得到∠ADB=90°,根据余角的性质即可得到结论;
(2)根据已知条件得到∠ACE=∠ADC,等量代换得到∠ACE=∠CAE,于是得到结论;
(3)如图2,连接OC,根据圆周角定理得到∠COB=2∠CAB,等量代换得到∠COB=∠ABD,根据相似三角形的性质得到OH=5,根据勾股定理得到AB=
=26,由相似三角形的性质即可得到结论.
(1)连接AD.如图1,设∠BDC=α,∠ADC=β,
则∠CAB=∠BDC=α,
∵点C为弧ABD中点,∴
=
,∴∠ADC=∠DAC=β,∴∠DAB=β﹣α,
∵AB为⊙O直径,∴∠ADB=90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣α),∴∠ABD=2α,∴∠ABD=2∠BDC;
![]()
(2)∵CH⊥AB,∴∠ACE+∠CAB=∠ADC+∠BDC=90°,
∵∠CAB=∠CDB,∴∠ACE=∠ADC,
∵∠CAE=∠ADC,∴∠ACE=∠CAE,∴AE=CE;
(3)如图2,连接OC,∴∠COB=2∠CAB,
∵∠ABD=2∠BDC,∠BDC=∠CAB,∴∠COB=∠ABD,
∵∠OHC=∠ADB=90°,∴△OCH∽△ABD,∴
,
∵OH=5,∴BD=10,∴AB=
=26,∴AO=13,∴AH=18,
∵△AHE∽△ADB,∴
,即
=
,∴AE=
,∴DE=
.