题目内容

如图,等腰三角形ABC中,∠BAC=90°,在底边BC上截取BD=AB,过D作DE⊥BC交AC于E,连接AD,则图中等腰三角形的个数是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
D
分析:三角形ABC是等腰三角形,且∠BAC=90°,所以∠B=∠C=45°,又DE⊥BC,所以∠DEC=∠C=45°,所以△EDC是等腰三角形,BD=AB,所以△ABD是等腰三角形,∠BAD=∠BDA,而∠EAD=90°-∠BAD,∠EDA=90°-∠BDA,所以∠EAD=∠EDA,所以△EAD是等腰三角形,因此图中等腰三角形共4个.
解答:∵三角形ABC是等腰三角形,且∠BAC=90°,
∴∠B=∠C=45°,
∵DE⊥BC,
∴∠EDB=∠EDC=90°
∴∠DEC=∠C=45°,
∴△EDC是等腰三角形,
∵BD=AB,
∴△ABD是等腰三角形,
∴∠BAD=∠BDA,
而∠EAD=90°-∠BAD,∠EDA=90°-∠BDA,
∴∠EAD=∠EDA,
∴△EAD是等腰三角形,
因此图中等腰三角形共4个.
故选D.
点评:本题考查了等腰三角形的性质和判定及三角形内角和定理;由已知条件利用相关的性质求得各个角的度数是正确解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网