题目内容
如图,以△ABC的一边AB为直径作⊙O, ⊙O与BC边的交点恰好为BC边的中点D,过点D作⊙O的切线交AC于点E,
(1) 求证:DE⊥AC;
(2) 若AB=3DE,求tan∠ACB的值;
![]()
(1)(略)
(2)![]()
设DE=b,EC=a,则AB=3b,AE=3b-a,∵AD⊥BC,DE⊥AC,易证∠C=∠ADE,
则△ADE∽△DCE,∴DE2=AE●EC,即:
,化简得:
;
解得:
,则
,故tan∠ACB=
;
练习册系列答案
相关题目