题目内容
7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )
![]()
|
| A. | a=b | B. | a=3b | C. | a=b | D. | a=4b |
考点:
整式的混合运算.
专题:
几何图形问题.
分析:
表示出左上角与右下角部分的面积,求出之差,根据之差与BC无关即可求出a与b的关系式.
解答:
解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,
∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,
∴AE+a=4b+PC,即AE﹣PC=4b﹣a,
∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,
则3b﹣a=0,即a=3b.
故选B
![]()
点评:
此题考查了整式的混合运算的应用,弄清题意是解本题的关键.
练习册系列答案
相关题目