题目内容
分析:由平行四边形与折叠的性质,易得CD∥MN∥AB,然后根据平行线的性质,即可求得∠DMN=∠FMN=∠A=70°,又由平角的定义,即可求得∠AMF的度数.
解答:解:∵四边形ABCD是平行四边形,
∴AB∥CD,
根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,
∴AB∥CD∥MN,
∵∠A=70°,
∴∠FMN=∠DMN=∠A=70°,
∴∠AMF=180°-∠DMN-∠FMN=180°-70°-70°=40°.
故选B.
∴AB∥CD,
根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,
∴AB∥CD∥MN,
∵∠A=70°,
∴∠FMN=∠DMN=∠A=70°,
∴∠AMF=180°-∠DMN-∠FMN=180°-70°-70°=40°.
故选B.
点评:此题考查了平行四边形的性质、平行线的性质与折叠的性质.此题难度不大,注意数形结合思想的应用,注意折叠中的对应关系.
练习册系列答案
相关题目