题目内容
【题目】如图,AB是⊙O的弦,AC与⊙O相切于点A,且∠BAC=52°.
(1)求∠OBA的度数;
(2)求∠D的度数.
![]()
【答案】(1)38°;(2)52°.
【解析】
(1)连接OA,由切线的性质可得∠OAC=90°,再由已知条件可求出∠OAB的度数,由圆的性质可得△OAB是等腰三角形,根据等边对等角即可求出∠OBA的度数;
(2)由(1)可知△OAB是等腰三角形,所以∠AOB的度数可求,再由圆周角定理即可求出∠D度数.
(1)连接OA,
∵AC与⊙O相切于点A,
∴OA⊥AC,
∴∠OAC=90°,
∵∠BAC=52°,
∴∠OAB=38°,
∵OA=OB,
∴∠OBA=∠OAB=38°;
(2)∵∠OBA=∠OAB=38°,
∴∠AOB=180°﹣2×38°=104°,
∴∠D=
∠AOB=52°.
![]()
练习册系列答案
相关题目