题目内容
如图,AB=AD,BC=CD,点E在AC上,则全等三角形共有
- A.1对
- B.2对
- C.3对
- D.4对
C
分析:根据AB=AD,BC=CD,以及AC=AC,可证明△ABC≌△ADC,则∠ACB=∠ACD,可证明△BCE≌△DCE,则BE=DE,从而得出△ABE≌△ADE.
解答:∵AB=AD,BC=CD,AC=AC,
∴△ABC≌△ADC(SSS),
∴∠ACB=∠ACD,
∴△BCE≌△DCE(SAS),
∴BE=DE,
∴△ABE≌△ADE(SSS).
∴全等三角形共有3对.
故选C.
点评:本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
分析:根据AB=AD,BC=CD,以及AC=AC,可证明△ABC≌△ADC,则∠ACB=∠ACD,可证明△BCE≌△DCE,则BE=DE,从而得出△ABE≌△ADE.
解答:∵AB=AD,BC=CD,AC=AC,
∴△ABC≌△ADC(SSS),
∴∠ACB=∠ACD,
∴△BCE≌△DCE(SAS),
∴BE=DE,
∴△ABE≌△ADE(SSS).
∴全等三角形共有3对.
故选C.
点评:本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关题目