题目内容
【题目】从一块长12cm、宽9cm、高6cm的长方体陶泥上切下一个最大的正方体,剩下部分的表面积与原长方体的表面积相比,会怎样变化?列出你想到的所有情况。
【答案】①以长方体的一个顶点为正方体的一个顶点切:表面积减小72平方厘米;
②不挨顶点,沿棱切:表面积不变。
③从长方体里边切,不挨顶点和棱:表面积增加72平方厘米
【解析】
,如图,从一块长12cm、宽9cm、高6cm的长方体陶泥上切下一个最大的正方体,正方体的棱长是6厘米,①以长方体的一个顶点为正方体的一个顶点切,表面积减少了两个正方体的面;②不挨顶点,沿棱切:表面积不变;③从长方体里边切,不挨顶点和棱,表面积增加两个正方体的面,据此分析。
①以长方体的一个顶点为正方体的一个顶点切:表面积减小,6×6×2=72(平方厘米)。
②不挨顶点,沿棱切:表面积不变。
③从长方体里边切,不挨顶点和棱:表面积增加,6×6×2=72(平方厘米)
练习册系列答案
相关题目