题目内容
【题目】利用公式1×1+2×2+…+n×n=n×(n+1)×(2×n+1)÷6,计算:15×15+16×16+…+21×21.
【答案】2296
【解析】有15×15+16×16+…+21×21
=(1×1+2×2+…+15×15+16×16+…+21×21)-(1×1+2×2+…+13×13+14×14)
=[21×(21+1)×(2×21+1)÷6]-[14×(14+1)×(2×14+1)÷6]
=3311-1015
=2296.
练习册系列答案
相关题目