题目内容

【题目】如图ABCD是一个平行四边形,CE的长度是BE的2倍,F是DC的中点,三角形ABE的面积是9平方厘米,那么三角形ADF的面积是   平方厘米.

【答案】13.5

【解析】

试题分析:连接AC,则三角形ADF的面积就是三角形ACD的一半,由此只要求得三角形ACD的面积即可,因为三角形ACD与三角形ABC的面积相等都等于平行四边形面积的一半,这里只要利用CE=2BE得出BC=3BE,再利用高一定时,三角形的面积与底成正比的性质计算出三角形ABC的面积即可.

解:因为CE=2BE,所以BC=3BE,又因为三角形ABE的面积是9平方厘米,

所以三角形ABC的面积为:9×3=27(平方厘米),则三角形ACD的面积是27平方厘米;

因为F是CD的中点,所以三角形ADF的面积为:

27÷2=13.5(平方厘米),

答:三角形ADF的面积是13.5平方厘米.

故答案为:13.5.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网