题目内容
做一项工作,甲的工作效率等于乙、丙二人工作效率的和,丙的工作效率与甲、乙二人工作效率的和的比是1:5;如果三人合作需10天完成,那么乙单独完成此项工作需要( )
分析:由题意,甲的工作效率为乙丙两人工作效率之和,那么甲的效率为
×
=
;又因为丙的工作效率与甲、乙二人工作效率和的比是1:5,可知丙占三人效率和的
,则丙的效率为
×
=
.那么乙的效率为
-
=
,乙单独完成此项工作需要1÷
,解决问题.
1 |
10 |
1 |
2 |
1 |
20 |
1 |
6 |
1 |
10 |
1 |
6 |
1 |
60 |
1 |
20 |
1 |
60 |
1 |
30 |
1 |
30 |
解答:解:甲的效率=乙丙的效率和:
÷2=
,
丙的效率:
×
=
,
乙的效率:
-
=
,
乙单独需要:1÷
=30(天);
答:乙单独完成此项工作需要30天.
故选:A.
1 |
10 |
1 |
20 |
丙的效率:
1 |
10 |
1 |
6 |
1 |
60 |
乙的效率:
1 |
20 |
1 |
60 |
1 |
30 |
乙单独需要:1÷
1 |
30 |
答:乙单独完成此项工作需要30天.
故选:A.
点评:此题属于复杂的工程问题,关键要理清数量关系.此题的思路是:由问题入手,重要的是要求出乙的工作效率,但不能直接求出.于是根据已知条件,先求出甲的和一的工作效率,然后即可求出乙的工作效率,解决问题.
练习册系列答案
相关题目