题目内容
一列数,前两个数是1,3,从第三个数开始,每个数都是它前面两个数的和,即1,3,4,7,11,18,29,…到第2006个数为止,共有
1338
1338
个奇数.分析:1,3,4,7,11,18,29,…这个数列是按照“奇数、奇数、偶数”的顺序循环重复排列的,即每过3个数循环一次.先求出2006个数里面有多少组这样的循环,还余几,然后根据组数和余数进行求解.
解答:解:这个数列是按照“奇数、奇数、偶数”的顺序循环重复排列的;每一组循环中有2个奇数和1个偶数;
2006÷3=668(组)…2(个);
余数是2,这两个数都是奇数;
668×2+2=1338;
答:共有1338个奇数.
2006÷3=668(组)…2(个);
余数是2,这两个数都是奇数;
668×2+2=1338;
答:共有1338个奇数.
点评:本类型的题目先判断出按什么顺序循环重复排列的,把这样的数看成一组,看所要求的个数有几个这样的一组.
练习册系列答案
相关题目
一列数,前两个都是1,从第三个开始,每个数都是前两个数的和.即1,1,2,3,5,8,13…到第2000个数为止,共排出( )个奇数.
A、668 | B、1332 | C、1333 | D、1334 |