题目内容

(2
3
4
×0.72+
7
25
×2.75)×[4.375-
2
3
8
+1
1
3
)]
[7
1
3
-(
49
12
-
63
20
+
77
30
-
91
42
+
105
56
)]÷22

1
3
+
1
3+6
+
1
3+6+9
+…+
1
3+6+9+…+96+99
分析:(1)运用乘法的分配律进行简算,
(2)原式=[7
1
3
-7×(
7
12
-
9
20
+
11
30
-
13
42
+
15
56
)]÷22=[7
1
3
-7×(
1
3
+
1
4
-
1
4
-
1
5
+
1
5
+
1
6
-
1
6
-
1
7
+
1
7
+
1
8
)]÷22,再进行简算,
(3)原式=
1
3
×[1+
1
1+2
+
1
1+2+3
+…+
1
1+2+3+…+32+33
]=
1
3
×(1+
2
2×3
+
2
3×4
+…+
2
33×34
)=
1
3
×[2×(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…
1
33
-
1
34
)],再进行简算.
解答:解:(1)(2
3
4
×0.72+
7
25
×2.75)×[4.375-
2
3
8
+1
1
3
),
=(2.75×0.72+0.28×2.75)×[4.375-(2.375+1
1
3
)],
=[2.75×(0.72+0.28)]×[4.375-2.375+1
1
3
],
=2.75×1×(2+1
1
3
),
=2.75×1×3
1
3

=
55
6


(2)[7
1
3
-(
49
12
-
63
20
+
77
30
-
91
42
+
105
56
)]÷22

=[7
1
3
-7×(
7
12
-
9
20
+
11
30
-
13
42
+
15
56
)]÷22,
=[7
1
3
-7×(
1
3
+
1
4
-
1
4
-
1
5
+
1
5
+
1
6
-
1
6
-
1
7
+
1
7
+
1
8
)]÷22,
═[7
1
3
-7×(
1
3
+
1
8
)]÷22,
=(
22
3
-7×
11
24
)÷22,
=(
22
3
-
77
24
)÷22,
=
22
3
÷22-
77
24
÷22,
=
1
3
-
7
48

=
3
16



(3)
1
3
+
1
3+6
+
1
3+6+9
+…+
1
3+6+9+…+96+99

=
1
3
×[1+
1
1+2
+
1
1+2+3
+…+
1
1+2+3+…+32+33
],
=
1
3
×(1+
2
2×3
+
2
3×4
+…+
2
33×34
),
=
1
3
×[2×(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…
1
33
-
1
34
)],
=
1
3
×[2×(1-
1
34
)],
=
1
3
×2×
33
34

=
11
17
点评:本题考查了分数、小数四则混合运算的定律,注意算式的特点,灵活运用运算定律进行简算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网