题目内容

【题目】用0、1、2、3、4这五个数字可以组成   个没有重复数字的偶数.

【答案】163

【解析】

试题分析:分为一位数、两位数、三位数、四位数、五位数这五种情况,分别进行讨论,找出各自有多少个偶数,再相加即可.

解:一位偶数有:0,2和4,3个;

两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;

三位偶数:

位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,

当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,

根据分类计数原理知共有12+18=30种结果;

四位偶数:

当个位数字为0时,这样的四位数共有:=24个,

当个位数字为2或者4时,这样的四位数共有:2×C4=36个,

一共是24+36=60(个)

五位偶数:

当个位数字为0时,这样的五位数共有:A44=24个,

当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,

所以组成没有重复数字的五位偶数共有24+36=60个.

一共是:3+10+30+60+60=163(个);

答:可以组成 163个没有重复数字的偶数.

故答案为:163.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网