题目内容

14.一个容器中已注满水,有大、中、小三个球,第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的$\frac{1}{2}$,第三次是第二次的1.5倍,则三个球的体积之比是(  )
A.2:6:7B.1:3:6C.1:3:5D.1:2:3

分析 根据题意,先设小球的体积是1,由此即可表示出每次溢出的水,再根据溢出的水与小球的关系,即可求出答案.

解答 解:第一次溢出的水是小球的体积,假设为1,
第二次溢出的水是中球的体积-小球的体积,
第三次溢出的水是大球的体积+小球的体积-中球的体积,
第一次是第二次的$\frac{1}{2}$,
所以中球的体积为:1+2=3,
第三次是第二次的1.5倍,第二次是2,
所以大球的体积为:3-1+3=5,
V小球:V中球:V大球=1:3:5,
答:三个球的体积之比是:1:3:5.
故选:C.

点评 解答此题的关键是,根据题意,找出对应量,即可解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网