题目内容
根据条件求x:y:z.
(1)x:y=5:3,y:z=4:5
(2)x:y=0.5:
,y:z=
:
.
(1)x:y=5:3,y:z=4:5
(2)x:y=0.5:
1 |
5 |
1 |
2 |
2 |
3 |
分析:(1)因为x:y=5:3,y:z=4:5,所以x、z都是与y组成比,所以先求出3和4的最小公倍数是12,所以将y的份数都转化成12,就可以得出三个数的连比;
(2)先将x与y,y与z的比化成整数比,即x:y=0.5:
=5:2=15:6,y:z=
:
=3:4=6:8,即可求出三个数的连比.
(2)先将x与y,y与z的比化成整数比,即x:y=0.5:
1 |
5 |
1 |
2 |
2 |
3 |
解答:解:(1)由题意得:
x:y,
=5:3,
=20:12;
y:z,
=4:5,
=12:15;
则x:y:z=20:12:15.
答:x:y:z为20:12:15.
(2)x:y,
=0.5:
,
=5:2,
=15:6;
y:z,
=
:
,
=3:4,
=6:8;
则x:y:z=15:6:8.
答:x:y:z是15:6:8.
x:y,
=5:3,
=20:12;
y:z,
=4:5,
=12:15;
则x:y:z=20:12:15.
答:x:y:z为20:12:15.
(2)x:y,
=0.5:
1 |
5 |
=5:2,
=15:6;
y:z,
=
1 |
2 |
2 |
3 |
=3:4,
=6:8;
则x:y:z=15:6:8.
答:x:y:z是15:6:8.
点评:解决本题的关键是将中间数的份数通过求最小公倍数的方法化成同一个数,再进一步求三个数的比.
练习册系列答案
相关题目