题目内容
如图(单位:厘米)圆面积与长方形面积正好相等,那么图中阴影部分的周长是
78.5
78.5
厘米.分析:根据题意可设圆的半径为r,那么圆的面积即是长方形的面积为πr2,所以长方形的长就等于πr,而阴影部分的周长就等于长方形的长的2倍,再加圆的周长的
,于是问题得解.
1 |
4 |
解答:解:设圆的半径为r,
则圆的面积=长方形的面积=πr2,
又因长方形的宽等于圆的半径,
所以长方形的长=πr2÷r=πr,
所以阴影部分的周长为:πr×2+2πr×
,
=2πr+
πr,
=
πr,
=
×3.14×10,
=78.5(厘米);
答:图中阴影部分的周长是78.5厘米.
故答案为:78.5.
则圆的面积=长方形的面积=πr2,
又因长方形的宽等于圆的半径,
所以长方形的长=πr2÷r=πr,
所以阴影部分的周长为:πr×2+2πr×
1 |
4 |
=2πr+
1 |
2 |
=
5 |
2 |
=
5 |
2 |
=78.5(厘米);
答:图中阴影部分的周长是78.5厘米.
故答案为:78.5.
点评:此题主要考查的是圆的周长、圆的面积和长方形的面积等公式的使用.
练习册系列答案
相关题目