题目内容
【题目】有一批正方形砖,如拼成一个长与宽之比为5:4的大长方形,则余38块,如改拼成长与宽各增加1块的大长方形,则少53块,那么,这批砖共有( )块.
A. 1838 B. 2038 C. 1853 D. 2053
【答案】B
【解析】
试题分析:如图所示:如果改拼成长与宽各增加1块的大长方形,则需要砖多出:53+38=91(块),那么去掉右下角的一块,剩下的块数(91﹣1)=90块,就相当于沿原来长方形的一条长和一条宽上的块数和,然后按5:4的比例分配即可求出原来沿长和宽的块数,列式为:长:90÷(5+4)×5=50(块),宽:90÷(5+4)×4=40(块);所以求这批砖的总块数,列式为:50×40+38=2038(块);据此解答.
解答:解:根据分析可得,
53+38﹣1=90(块),
长:90÷(5+4)×5=50(块),
宽:90÷(5+4)×4=40(块);
砖的总块数:50×40+38=2038(块);
答:这批砖共有2038块.
故选:B.
练习册系列答案
相关题目