题目内容

精英家教网如图,把一个圆柱的底面平均切成16份,然后沿着高垂直把这个圆柱切开,拼成一个和它体积相等的近似长方体.测得这个长方体的宽是10厘米,高是25厘米.这个近似长方体的体积是
 
立方厘米,表面积比圆柱增加了
 
平方厘米.
分析:根据题意,原来圆柱的半径等于拼成的近似长方体的宽,圆柱的高等于拼成的近似长方体的高,拼成的近似长方体的长等于圆柱底面周长的一半,因此可用长方形的体积公式V=长×宽×高进行计算,拼成的近似长方体的表面积比圆柱增加了两个长为25厘米,宽为10厘米的长方形,根据长方形的面积公式S=长×宽进行解答即可.
解答:解:拼成的近似长方体的长:3.14×10×2÷2=31.4(厘米)
拼成的近似长方体的体积:10×25×31.4=7850(立方厘米)
表面积比圆柱增加了:10×25×2=500(平方厘米)
答:这个近似长方体的体积是7850立方厘米,表面积比圆柱增加了500平方厘米.
故答案为:7850、500.
点评:解答此题的关键是确定近似长方体的长,然后再利用长方形的体积公式进行解答即可.
练习册系列答案
相关题目
阅读下列材料,并解决后面的问题.
★阅读材料:
我国是历史上较早发现并运用“勾股定理”的国家之一.我中古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.请运用“勾股定理”解决以下问题:

(1)如图一,分别以直角三角形的边为边长作正方形,其中s1=400,s2=225,则s3=
625
625

(2)如图二,是一个园柱形饮料罐,底面半径=8,高=15,顶面正中有一个小园孔,则一条直达底部的直吸管的最大长度是
17
17
.注:罐壁厚度和顶部园孔直径忽略不计.
(3)如图三,所示的直角三角形中,AB=6.则s1+s2的值=
13.5
13.5
. 注π值取3.
(4)如图四的圆柱,高=5厘米,底面半径=4厘米,在园柱底面A点有一只蚂蚁,它想吃到与A点相对的B点处的食物,需要爬行的路程是多少?小聪是这样思考的:
①将该园柱的侧面展开后得到一个长方形,如图五所示(A点的位置已经给出),请在图中中标出B点的位置并连接AB.
②小聪认为线段AB的长度是蚂蚁爬行的最短路程,那么蚂蚁爬行的最短路程是
13
13
厘米.注:π值取3.
(5)如图六,在长方形的底面A点有一只蚂蚁,想吃到上底面与A点相对的B点处的食物,它沿长方形表面爬行的最短路程是
15
15
厘米.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网