题目内容
(2012?郑州模拟)一个三位数,各位数字分别为A、B、C,它们互不相等,且都不为0.用A、B、C排得六个不同的三位数,若这六个三位数之和是2442,则这六个三位数中最大的是
821
821
.分析:六个数分别为ABC、ACB、BCA、BAC、CAB、CBA,相加后为200(A+B+C)+20(A+B+C)+2(A+B+C)=2442,故(A+B+C)=11,然后根据A、B、C互不相等,推出A、B、C的值,进而求出最大的这个六位数,解决问题.
解答:解:由题意得:
(100A+10B+C)+(100A+10C+B)+(100B+10A+C)+(100B+10C+A)+(100C+10B+A)+(100C+10A+B)=2442,
222×(A+B+C)=2442,
A+B+C=11,
因为A、B、C互不相等,且都不为零,
所以最大数只能是8,其次为2、1,所以最大数为821.
故答案为:821.
(100A+10B+C)+(100A+10C+B)+(100B+10A+C)+(100B+10C+A)+(100C+10B+A)+(100C+10A+B)=2442,
222×(A+B+C)=2442,
A+B+C=11,
因为A、B、C互不相等,且都不为零,
所以最大数只能是8,其次为2、1,所以最大数为821.
故答案为:821.
点评:此题属于数字和问题,考查了学生分析推理能力.
练习册系列答案
相关题目