(19)(本题14分)一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是。
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为?
(18)(本题14分)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2。
(Ⅰ)求证:AE//平面DCF;
(17)若,且当时,恒有,则以,b为坐标点P(,b)所形成的平面区域的面积等于____________。
(15)已知t为常数,函数在区间[0,3]上的最大值为2,则t=__________。
(16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答)。
(14)如图,已知球O点面上四点A、B、C、D,DA平面ABC,ABBC,DA=AB=BC=,则球O点体积等于___________。
(13)在△ABC中,角A、B、C所对的边分别为、b、c ,若,则_________________。
若,则=______________。