3.某人造地球卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变.每次测量中卫星的运动可近似看作圆周运动.某次测量卫星的轨道半径为r1,后来变为r2,r2<r1.以Ek1、Ek2表示卫星在这两个轨道上的动能,T1、T2表示卫星在这两个轨道上绕地球运动的周期,则
A.Ek2<Ek1,T2<T1
B.Ek2<Ek1,T2>T1
C.Ek2>Ek1,T2<T1
D.Ek2>Ek1,T2>T1
2.地球同步卫星到地心的距离r可由r3=求出.已知式中a的单位是m,b的单位是s,c的单位是m/s2,则
A.a是地球半径,b是地球自转的周期,c是地球表面处的重力加速度
B.a是地球半径,b是同步卫星绕地心运动的周期,c是同步卫星的加速度
C.a是赤道周长,b是地球自转的周期,c是同步卫星的加速度
D.a是地球半径,b是同步卫星绕地心运动的周期,c是地球表面处的重力加速度
1.设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀的球体,月球仍沿开采前的圆周轨道运动,则与开采前相比
A.地球与月球间的万有引力将变大
B.地球与月球间的万有引力将变小
C.月球绕地球运动的周期将变长
D.月球绕地球运动的周期将变短
4.地球同步卫星的线速度:地球同步卫星的线速度大小为v=ω0r=3.08×103 m/s,为定值,绕行方向与地球自转方向相同.
●歼灭难点训练
3.地球同步卫星的轨道半径:据牛顿第二定律有GMm/r2=mω02r,得r=,ω0与地球自转角速度相同,所以地球同步卫星的轨道半径为r=4.24×104 km.其离地面高度也是一定的.
2.地球同步卫星的周期:地球同步卫星的运转周期与地球自转周期相同.
地球同步卫星是相对地球表面静止的稳定运行卫星.
1.地球同步卫星的轨道平面,非同步人造地球卫星其轨道平面可与地轴有任意夹角,而同步卫星一定位于赤道的正上方,不可能在与赤道平行的其他平面上.
一般情况下运行的卫星,其所受万有引力不刚好提供向心力,此时,卫星的运行速率及轨道半径就要发生变化,万有引力做功,我们将其称为不稳定运行即变轨运动;而当它所受万有引力刚好提供向心力时,它的运行速率就不再发生变化,轨道半径确定不变从而做匀速圆周运动,我们称为稳定运行.
对于稳定运行状态的卫星,①运行速率不变;②轨道半径不变;③万有引力提供向心力,即GMm/r2=mv2/r成立.其运行速度与其运行轨道处于一一对应关系,即每一轨道都有一确定速度相对应.而不稳定运行的卫星则不具备上述关系,其运行速率和轨道半径都在发生着变化.
6.如图4-13所示,斜劈B的倾角为30°,劈尖顶着竖直墙壁静止于水平地面上,现将一个质量与斜劈质量相同、半径为r的球A放在墙面与斜劈之间,并从图示位置由静止释放,不计一切摩擦,求此后运动中
(1)斜劈的最大速度.
(2)球触地后弹起的最大高度。(球与地面作用中机械能的损失忽略不计)
5.一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图4-12所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳子质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经B驶向C.设A到B的距离也为H,车过B点时的速度为vB.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.