网址:http://m.1010jiajiao.com/timu_id_94293[举报]
(8分)己知函数在内取得一个最大值和一个最小值,且当时,有最大值,当时,有最小值.求函数的解析式.
已知等比数列中,,且,公比,(1)求;(2)设,求数列的前项和
【解析】第一问,因为由题设可知
又 故
或,又由题设 从而
第二问中,
当时,,时
故时,
时,
分别讨论得到结论。
由题设可知
或,又由题设
从而……………………4分
(2)
当时,,时……………………6分
故时,……8分
……………………10分
综上可得
(本题14分)已知函数,。
(1)当t=8时,求函数的单调区间;
(2)求证:当时,对任意正实数都成立;
(3)若存在正实数,使得对任意的正实数都成立,请直接写出满足这样条件的一个的值(不必给出求解过程)