摘要:∴取等号条件是. 即 取得最大值.----12分19解法一:
网址:http://m.1010jiajiao.com/timu_id_85592[举报]
已知点
(
),过点
作抛物线
的切线,切点分别为
、
(其中
).
(Ⅰ)若
,求
与
的值;
(Ⅱ)在(Ⅰ)的条件下,若以点
为圆心的圆
与直线
相切,求圆
的方程;
(Ⅲ)若直线
的方程是
,且以点
为圆心的圆
与直线
相切,
求圆
面积的最小值.
【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。
中∵直线
与曲线
相切,且过点
,∴
,利用求根公式得到结论先求直线
的方程,再利用点P到直线的距离为半径,从而得到圆的方程。
(3)∵直线
的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
,借助于函数的性质圆
面积的最小值![]()
(Ⅰ)由
可得,
. ------1分
∵直线
与曲线
相切,且过点
,∴
,即
,
∴
,或
, --------------------3分
同理可得:
,或
----------------4分
∵
,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,
,
,则
的斜率
,
∴直线
的方程为:
,又
,
∴
,即
. -----------------7分
∵点
到直线
的距离即为圆
的半径,即
,--------------8分
故圆
的面积为
. --------------------9分
(Ⅲ)∵直线
的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
, ………10分
∴![]()
,
当且仅当
,即
,
时取等号.
故圆
面积的最小值
.
查看习题详情和答案>>
设向量
=(a,b),
=(m,n),其中a,b,m,n∈R,由不等式|
•
|≤|
|•|
|恒成立,可以证明(柯西)不等式(am+bn)2≤(a2+b2)(m2+n2)(当且仅当
∥
,即an=bm时等号成立),己知x,y∈R+,若
+3
<k•
恒成立,利用柯西不等式可求得实数k的取值范围是 .
查看习题详情和答案>>
| α |
| β |
| α |
| β |
| α |
| β |
| α |
| β |
| x |
| y |
| x+y |
已知f(x)=a2x-
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
≥
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列. 查看习题详情和答案>>
| 1 |
| 2 |
(1)可以证明:定理“若a、b∈R*,则
| a+b |
| 2 |
| ab |
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列. 查看习题详情和答案>>