摘要:=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4???????????????????????????????? 12分 ⑴证明:平面和平面互相垂直;⑵证明:截面和截面面积之和是定值,并求出这个值;⑶若与平面所成的角为,求与平面所成角的正弦值.说明:本小题主要考查空间中的线面关系.面面关系.解三角形等基础知识.考查空间想象能力与逻辑思维能力.满分12分.解法一:(Ⅰ)证明:在正方体中...又由已知可得 所以..所以平面.所以平面和平面互相垂直.???????????????????????? 4分知.又截面PQEF和截面PQGH都是矩形.且PQ=1.所以截面PQEF和截面PQGH面积之和是.是定值.?????????????????????????????????????????????????????????????????????? 8分(III)解:连结BC′交EQ于点M.因为..所以平面和平面PQGH互相平行.因此与平面PQGH所成角与与平面所成角相等.与(Ⅰ)同理可证EQ⊥平面PQGH.可知EM⊥平面.因此EM与的比值就是所求的正弦值.设交PF于点N.连结EN.由知.因为⊥平面PQEF.又已知与平面PQEF成角.所以.即.解得.可知E为BC中点.所以EM=.又.故与平面PQCH所成角的正弦值为.????????????????????????????????????????????????? 12分解法二:以D为原点.射线DA.DC.DD′分别为x.y.z轴的正半轴建立如图的空间直角坐标系D-xyz由已知得.故 ......(Ⅰ)证明:在所建立的坐标系中.可得...因为.所以是平面PQEF的法向量.因为.所以是平面PQGH的法向量.因为.所以.所以平面PQEF和平面PQGH互相垂直.????????????????????????????????????????????????????????????????????? 4分(Ⅱ)证明:因为.所以.又.所以PQEF为矩形.同理PQGH为矩形.在所建立的坐标系中可求得..所以.又.所以截面PQEF和截面PQGH面积之和为.是定值.????????????????????????????????????????????? 8分(Ⅲ)解:由已知得与成角.又可得 .即.解得.所以.又.所以与平面PQGH所成角的正弦值为.????????????????????????????????????????????????????????????????????????? 12分

网址:http://m.1010jiajiao.com/timu_id_80410[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网