摘要:∵ =1+C×0.01+C×0.01+C×0.01+-≈1.1046
网址:http://m.1010jiajiao.com/timu_id_78182[举报]
例10.(2004年重庆卷)某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产x吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)
解:每月生产x吨时的利润为
,故它就是最大值点,且最大值为:
答:每月生产200吨产品时利润达到最大,最大利润为315万元.
已知y=x(x-1)(x+1)的图象如图所示.令f(x)=x(x-1)(x+1)+0.01,则下列关于f(x)=0的解叙述正确的是
①有三个实根;
②x>1时恰有一实根;
③当0<x<1时恰有一实根;
④当-1<x<0时恰有一实根;
⑤当x<-1时恰有一实根(有且仅有一实根).
查看习题详情和答案>>
①⑤
①⑤
.①有三个实根;
②x>1时恰有一实根;
③当0<x<1时恰有一实根;
④当-1<x<0时恰有一实根;
⑤当x<-1时恰有一实根(有且仅有一实根).
9、已知y=x(x-1)(x+1)的图象如图所示,今考虑f(x)=x(x-1)(x+1)+0.01,则方程f(x)=0①有三个实根;②当x<-1时,恰有一实根(有一实根且仅有一实根);③当-1<x<0时,恰有一实根;④当0<x<1时,恰有一实根;⑤当x>1时,恰有一实根.则正确结论的编号为
查看习题详情和答案>>
①②
.甲、乙两机床加工同一种零件,抽检得到它们加工后的零件尺寸x(单位:cm)及个数y如下表.
由表中数据得y关于x的线性回归方程为y=-91+100x(1.01≤x≤1.05),其中合格零件尺寸为1.03±0.01(cm).
(1)是否有99%的把握认为加工零件的质量与甲、乙有关?
(2)从甲、乙加工后尺寸大于1.03cm的零件中各取1个,求恰好取到2个都是不合格零件的概率.
查看习题详情和答案>>
1.01 | 1.02 | 1.03 | 1.04 | 1.05 | ||
零件尺寸x | 甲 | 3 | 7 | 8 | 9 | 3 |
零件个数y | 乙 | 7 | 4 | 4 | 4 | a |
(1)是否有99%的把握认为加工零件的质量与甲、乙有关?
(2)从甲、乙加工后尺寸大于1.03cm的零件中各取1个,求恰好取到2个都是不合格零件的概率.