摘要:2.为了实施有效的化归.既可以变更问题的条件.也可以变更问题的结论.既可以变换问题的内部结构.又可以变换问题的外部形式.既可以从代数的角度去认识问题.又可以从几何的角度去解决问题.
网址:http://m.1010jiajiao.com/timu_id_77852[举报]
(2012•保定一模)为了搞好对水电价格的调研工作,管理部门采用了分层抽样的方法,分别从春之曲、凤凰城、山水人家三个居民区的相关家庭中,抽取若干户家庭进行调研,有关数据见下表(单位:户)
(1)求x,y;
(2)若从春之曲、山水人家两个片区抽取的家庭中随机选2户家庭参加实施办法的听证会,求这2户家庭分别来自春之曲、山水人家两个居民区的概率.
查看习题详情和答案>>
| 居民区 | 相关家庭户数 | 抽取家庭户数 |
| 春之曲 | 34 | x |
| 凤凰城 | 17 | 1 |
| 山水人家 | 51 | y |
(2)若从春之曲、山水人家两个片区抽取的家庭中随机选2户家庭参加实施办法的听证会,求这2户家庭分别来自春之曲、山水人家两个居民区的概率.
为了对廉租房的实施办法进行研究,用分层抽样的方法从A,B,C三个片区的相关家庭中,抽取若干户家庭进行调研,有关数据见下表(单位:户)
(I)求x,y;
(II)若从B、C两上片区抽取的家庭中随机选2户家庭参加实施办法的听证会,求这2户家庭都来自C片区的概率.
查看习题详情和答案>>
| 片区 | 相关家庭户数 | 抽取家庭户数 |
| A | 34 | 2 |
| B | 17 | x |
| C | 68 | y |
(II)若从B、C两上片区抽取的家庭中随机选2户家庭参加实施办法的听证会,求这2户家庭都来自C片区的概率.
给定一个n项的实数列a1,a2,…,an(n∈N*),任意选取一个实数c,变换T(c)将数列a1,a2,…,an变换为数列|a1-c|,|a2-c|,…,|an-c|,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数c可以不相同,第k(k∈N*)次变换记为Tk(ck),其中ck为第k次变换时选择的实数.如果通过k次变换后,数列中的各项均为0,则称T1(c1),T2(c2),…,Tk(ck)为“k次归零变换”
(Ⅰ)对数列:1,2,4,8,分别写出经变换T1(2),T2(3),T3(4)后得到的数列;
(Ⅱ)对数列:1,3,5,7,给出一个“k次归零变换”,其中k≤4;
(Ⅲ)证明:对任意n项数列,都存在“n次归零变换”.
查看习题详情和答案>>
(Ⅰ)对数列:1,2,4,8,分别写出经变换T1(2),T2(3),T3(4)后得到的数列;
(Ⅱ)对数列:1,3,5,7,给出一个“k次归零变换”,其中k≤4;
(Ⅲ)证明:对任意n项数列,都存在“n次归零变换”.
为了考察某种药物预防疾病的效果,进行抽样调查,得到如下的列联表,
|
查看习题详情和答案>>
给定一个n项的实数列a1,a2,…,an(n∈N*),任意选取一个实数c,变换T(c)将数列a1,a2,…,an变换为数列|a1-c|,|a2-c|,…,|an-c|,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数c可以不相同,第k(k∈N*)次变换记为Tk(ck),其中ck为第k次变换时选择的实数.如果通过k次变换后,数列中的各项均为0,则称T1(c1),T2(c2),…,Tk(ck)为“k次归零变换”.
(Ⅰ)对数列:1,3,5,7,给出一个“k次归零变换”,其中k≤4;
(Ⅱ)证明:对任意n项数列,都存在“n次归零变换”;
(Ⅲ)对于数列1,22,33,…,nn,是否存在“n-1次归零变换”?请说明理由.
查看习题详情和答案>>
(Ⅰ)对数列:1,3,5,7,给出一个“k次归零变换”,其中k≤4;
(Ⅱ)证明:对任意n项数列,都存在“n次归零变换”;
(Ⅲ)对于数列1,22,33,…,nn,是否存在“n-1次归零变换”?请说明理由.