摘要:13.一个矩形的长和宽分别为d.b.它的周长为14.面积为10.那么a2b+ab2的值为.
网址:http://m.1010jiajiao.com/timu_id_768443[举报]
由于矩形和菱形特殊的对称美和矩形的四个角都是直角,从而为密铺提供了方便,因此墙砖一般设计为矩形,而且图案以菱形居多,如图3所示,是长为30cm,宽为20cm的一块矩形瓷砖,E、F、G、H分别是矩形四边的中点,阴影部分为黄色,其它部分为淡蓝色,现有一面长为6m,高为3m的墙面准备贴这种瓷砖,那么:这面墙要贴的瓷砖数及全部贴满后这面墙上最多出现的与图3中面积相等的菱形个数分别为
- A.288、561
- B.300、561
- C.288、566
- D.300、566
如图1,矩形OABC的顶点O为原点,点E在AB上,把△CBE沿CE折叠,使点B落在OA边上的点D处,点A、D坐标分别为(10,0)和(6,0),抛物线y=
x2+bx+c过点C、B.
(1)求C、B两点的坐标及该抛物线的解析式;
(2)如图2,长、宽一定的矩形PQRS的宽PQ=1,点P沿(1)中的抛物线滑动,在滑动过程中PQ∥x轴,且RS在PQ的下方,当P点横坐标为-1时,点S距离x轴
个单位,当矩形PQRS在滑动过程中被x轴分成上下两部分的面积比为2:3时,求点P的坐标;
(3)如图3,动点M、N同时从点O出发,点M以每秒3个单位长度的速度沿折线ODC按O→D→C的路线运动,点N以每秒8个单位长度的速度沿折线OCD按O?C?D的路线运动,当M、N两点相遇时,它们都停止运动.设M、N同时从点O出发t秒时,△OMN的面积为S.①求出S与t的函数关系式,并写出t的取值范围:②设S0是①中函数S的最大值,那么S0= .
查看习题详情和答案>>
1 |
5 |
(1)求C、B两点的坐标及该抛物线的解析式;
(2)如图2,长、宽一定的矩形PQRS的宽PQ=1,点P沿(1)中的抛物线滑动,在滑动过程中PQ∥x轴,且RS在PQ的下方,当P点横坐标为-1时,点S距离x轴
11 |
5 |
(3)如图3,动点M、N同时从点O出发,点M以每秒3个单位长度的速度沿折线ODC按O→D→C的路线运动,点N以每秒8个单位长度的速度沿折线OCD按O?C?D的路线运动,当M、N两点相遇时,它们都停止运动.设M、N同时从点O出发t秒时,△OMN的面积为S.①求出S与t的函数关系式,并写出t的取值范围:②设S0是①中函数S的最大值,那么S0=
查看习题详情和答案>>