摘要:18. 如图.已知△ABC是等边三角形.D.E分别在边BC.AC上.且CD=CE.连结DE并延长至点F.使EF=AE.连结AF.BE和CF.(1)请在图中找出一对全等三角形.用符号“≌ 表示.并加以证明.(2)判断四边形ABDF是怎样的四边形.并说明理由.(3)若AB=6.BD=2DC.求四边形ABEF的面积.
网址:http://m.1010jiajiao.com/timu_id_766302[举报]
(本题满分12分,任选一题作答.)
Ⅰ、如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.
(1)当
时,证明DC⊥OA;
(2)若△OCD的面积为S,求S与t的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、E、D为顶点的四边形是梯形,求点E的坐标.
Ⅱ、(1)如图Ⅱ-1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图Ⅱ-2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.
(3)如图Ⅱ-3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.
查看习题详情和答案>>
Ⅰ、如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.
(1)当
(2)若△OCD的面积为S,求S与t的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、E、D为顶点的四边形是梯形,求点E的坐标.
Ⅱ、(1)如图Ⅱ-1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图Ⅱ-2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.
(3)如图Ⅱ-3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.
查看习题详情和答案>>
(本小题满分8分)
已知,在△ABC中,∠BAC=90°,AB=AC,BC=
,点D、E在BC边上(均不与点B、C重合,点D始终在点E左侧),且∠DAE=45°.
1.(1)请在图①中找出两对相似但不全等的三角形,写在横线上 , ;
2.(2)设BE=m,CD=n,求m与n的函数关系式,并写出自变量n的取值范围;
3.(3)如图②,当BE=CD时,求DE的长;
4.(4)求证:无论BE与CD是否相等,都有DE2=BD2+CE2.
![]()
查看习题详情和答案>>
(本小题满分10分)已知,等腰Rt△ABC中,点O是斜边的中点,△MPN是直角三角形,固定△ABC,滑动△MPN,在滑动过程中始终保持点P在AC上,且 PM⊥AB,PN⊥BC,垂足分别为E、F.
![]()
(1)如图1,当点P与点O重合时,OE、OF的数量和位置关系分别是____ __.
(2)当△MPN移动到图2的位置时,(1)中的结论还成立吗?请说明理由.
(3)如图3,等腰Rt△ABC的腰长为6,点P在AC的延长线上时,Rt△MPN的边PM
与AB的延长线交于点E,直线BC与直线NP交于点F,OE交BC于点H,且 EH: HO=2:5,则BE的长是多少?
查看习题详情和答案>>