摘要:(2)点为线段上的一个动点.过作交于点.过作交折线于点.连结.设.
网址:http://m.1010jiajiao.com/timu_id_759976[举报]
如图,在平面直角坐标系中,抛物线经过,、,、,,且.
【小题1】求抛物线的解析式
【小题2】在抛物线上是否存在一点,使得是以为底边的等腰三角形?若存在,求出点的坐标,并判断这个等腰三角形是否为等腰直角三角形?若不存在,请说明理由;
【小题3】连接,为线段上的一个动点(点与、不重合),过作轴的垂线与这个二次函数的图象交于点,设线段的长为,点的横坐标为,求与之间的函数关系式,并写出自变量的取值范围
(12分)如图,已知关于的一元二次函数()的图象与轴相交于、两点(点在点的左侧),与轴交于点,且,顶点为.
【小题1】⑴ 求出一元二次函数的关系式;
【小题2】⑵ 点为线段上的一个动点,过点作轴的垂线,垂足为.若,的面积为,求关于的函数关系式,并写出的取值范围;
【小题3】⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由. 查看习题详情和答案>>
【小题1】⑴ 求出一元二次函数的关系式;
【小题2】⑵ 点为线段上的一个动点,过点作轴的垂线,垂足为.若,的面积为,求关于的函数关系式,并写出的取值范围;
【小题3】⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由. 查看习题详情和答案>>
如图,抛物线与轴相交于、两点(点在点的左侧),与轴相交于点,顶点为.
(1)直接写出、、三点的坐标和抛物线的对称轴;
(2)连接,与抛物线的对称轴交于点,点为线段上的一个动点,过点作交抛物线于点,设点的横坐标为;
①用含的代数式表示线段的长,并求出当为何值时,四边形为平行四边形?
②设的面积为,求与的函数关系式
查看习题详情和答案>>