网址:http://m.1010jiajiao.com/timu_id_75896[举报]
一、选择题:
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
D
D
A
B
D
B
C
B
C
D
B
1.提示:所以,故选C。
2.提示:命题P:,所以命题P是假命题,
命题Q
当时,。 ,所以以命题Q是真命题,故选D。故选A。
3.提示:又,所以,故选D。
4.提示:在AB上取点D,使得,则点P只能在AD内运动,则,
5.提示:故选B。
6.提示:由图(1)改为图(2)后每次循环时的值都为1,因此运行过程出现无限循环,故选D
7.提示:设全班40个人的总分为S,
则,故选B。
8.提示:
所以约束条件为表示的平面区域是以点O(0,0),,N(0,1),Q(2,3)为顶点的平行四边形(包括边界),故当时,的最大值是4,故选C。
9.提示:由及得
如图
过A作于M,则
得.
故选B.
10.提示:不妨设点(2,0)与曲线上不同的三的点距离为分别,它们组成的等比数列的公比为若令,显然,又所以,不能取到。故选B。
11.提示:使用特值法:取集合当可以排除A、B;
取集合,当可以排除C;故选D;
12.提示:n棱柱有个顶点,被平面截去一个三棱锥后,可以分以下6种情形(图1~6)
在图4,图6所示的情形,还剩个顶点;
在图5的情形,还剩个顶点;
在图2,图3的情形,还剩个顶点;
在图1的情形,还剩下个顶点.故选B.
二、填空题:
13.
提示:由
14.
提示:斜率 ,切点,所以切线方程为:
15.
提示:当时,不等式无解,当时,不等式变为 ,
由题意得或,所以,或
16.
三、解答题:
17.解:① ∵∴的定义域为R;
② ∵,
∴为偶函数;
③ ∵, ∴是周期为的周期函数;
④ 当时,= ,
∴当时单调递减;当时,
=,
单调递增;又∵是周期为的偶函数,∴在上单调递增,在上单调递减();
⑤ ∵当时;
当时.∴的值域为;
⑥由以上性质可得:在上的图象如图所示:
18.解:(Ⅰ)取PC的中点G,连结EG,GD,则
由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。
所以四边形FEGD为矩形,因为G为等腰Rt△RPD斜边PC的中点,
所以DG⊥PC,
|