摘要:(1)求点的坐标(用表示),(2)求抛物线的解析式,
网址:http://m.1010jiajiao.com/timu_id_755078[举报]
(2012•北塘区一模)已知抛物线的顶点坐标为(
,-
),且经过点C(1,0),若此抛物线与x轴的另一交点为点B,与y轴的交点为点A,设P、Q分别为AB、OB边上的动点,它们同时分别从点A、O向B点匀速运动,速度均为每秒1个单位,设P、Q移动时间为t(0≤t≤4)
(1)求此抛物线的解析式并求出P点的坐标(用t表示);
(2)当△OPQ面积最大时求△OBP的面积;
(3)当t为何值时,△OPQ为直角三角形?
(4)△OPQ是否可能为等边三角形?若可能请求出t的值;若不可能请说明理由,并改变点Q的运动速度,使△OPQ为等边三角形,求出此时Q点运动的速度和此时t的值.
查看习题详情和答案>>
5 |
2 |
27 |
16 |
(1)求此抛物线的解析式并求出P点的坐标(用t表示);
(2)当△OPQ面积最大时求△OBP的面积;
(3)当t为何值时,△OPQ为直角三角形?
(4)△OPQ是否可能为等边三角形?若可能请求出t的值;若不可能请说明理由,并改变点Q的运动速度,使△OPQ为等边三角形,求出此时Q点运动的速度和此时t的值.
如图,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以点O为坐标原点建立坐标系,设P、Q分别为AB、OB边上的动点它们同时分别从点A、O向B点匀速运动,速度均为1cm/秒,设P、Q移动时间为t(0≤t≤4)
(1)过点P做PM⊥OA于M,求证:AM:AO=PM:BO=AP:AB,并求出P点的坐标(用t表示);
(2)求△OPQ面积S(cm2),与运动时间t(秒)之间的函数关系式,当t为何值时,S有最大值?最大是多少?
(3)当t为何值时,△OPQ为直角三角形?
(4)证明无论t为何值时,△OPQ都不可能为正三角形.若点P运动速度不变改变Q的运动速度,使△OPQ为正三角形,求Q点运动的速度和此时t的值. 查看习题详情和答案>>
(1)过点P做PM⊥OA于M,求证:AM:AO=PM:BO=AP:AB,并求出P点的坐标(用t表示);
(2)求△OPQ面积S(cm2),与运动时间t(秒)之间的函数关系式,当t为何值时,S有最大值?最大是多少?
(3)当t为何值时,△OPQ为直角三角形?
(4)证明无论t为何值时,△OPQ都不可能为正三角形.若点P运动速度不变改变Q的运动速度,使△OPQ为正三角形,求Q点运动的速度和此时t的值. 查看习题详情和答案>>
如图,已知为直角三角形,,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、.
(1)求点的坐标(用表示);
(2)求抛物线的解析式;
(3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结 并延长交于点,试证明:为定值.
查看习题详情和答案>>