摘要:(1)当P点在边AB上运动时.点Q的横坐标关于运动时间t(秒)的函数图象如图②所示.请写出点Q开始运动时的坐标及点P运动速度,(2)求正方形边长及顶点C的坐标,中当t为何值时.△OPQ的面积最大.并求此时P点的坐标,(4)如果点P.Q保持原速度不变.当点P沿A→B→C→D匀速运动时.OP与PQ能否相等.若能.写出所有符合条件的t的值,若不能.请说明理由.
网址:http://m.1010jiajiao.com/timu_id_754622[举报]
如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A?B?C?D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A?B?C?D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由. 查看习题详情和答案>>
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A?B?C?D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由. 查看习题详情和答案>>
如图①,正方形ABCD中,点A、B的坐标分别为(0,12),(8,6),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q从点(1,0)出发,以相同速度沿x轴正方向运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.
(1)正方形边长 ,顶点C的坐标 ;
(2)当P点在边AB上运动时,△OPQ的面积S与运动时间t(秒)的函数图象是如图②所示的抛物线的一部分,求点P,Q运动速度;
(3)求在(2)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度速度不变,当点P沿A?B?C?D匀速运动时,OP与PQ能否相等,若能,直接写出所有符合条件的t的值.
查看习题详情和答案>>
(1)正方形边长
(2)当P点在边AB上运动时,△OPQ的面积S与运动时间t(秒)的函数图象是如图②所示的抛物线的一部分,求点P,Q运动速度;
(3)求在(2)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度速度不变,当点P沿A?B?C?D匀速运动时,OP与PQ能否相等,若能,直接写出所有符合条件的t的值.
查看习题详情和答案>>
如图所示,在直角坐标系xOy中,正方形ABCD的四个顶点坐标为A(0,6),B(2,4),C(4,6),D(2,8).动点M在正方形ABCD的边上,从点A出发沿A→B→C→D向终点D匀速运动,速度为每秒
个长度单位,同时动点N以每秒1个单位长度的速度从点P(1,0)出发沿x轴向终点Q(7,0)匀速运动,设两点运动的时间为t秒.
(1)求线段AB的解析式,并指出x的取值范围;
(2)求经过A、B、C三点的抛物线y=ax2+bx+c的解析式;
(3)当点M在边AB上运动时,△OMN的面积为S,试求出S关于t的函数关系式及t的取值范围,并指出当t为何值时,S有最大值.
(4)两动点M、N在运动过程中,OM与MN能否相等?若能,直接写出(不要解答过程)所有符合条件的t的值;若不能,请说明理由. 查看习题详情和答案>>
2 |
(1)求线段AB的解析式,并指出x的取值范围;
(2)求经过A、B、C三点的抛物线y=ax2+bx+c的解析式;
(3)当点M在边AB上运动时,△OMN的面积为S,试求出S关于t的函数关系式及t的取值范围,并指出当t为何值时,S有最大值.
(4)两动点M、N在运动过程中,OM与MN能否相等?若能,直接写出(不要解答过程)所有符合条件的t的值;若不能,请说明理由. 查看习题详情和答案>>
如图①,正方形ABCD中,点A、B的坐标分别为(0,10)、(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.
查看习题详情和答案>>
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.
查看习题详情和答案>>
(1)等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D,过P作PE⊥AC于点E.设P点运动时间为t.
①当点P在线段AB上运动时,线段DE的长度是否改变?若不改变,求出DE的值;若改变,请说明理由.
下面给出一种解题的思路,你可以按这一思路解题,也可以选择另外的方法解题.
解:过Q作QF⊥直线AC于点M
∵PE⊥AC于点E,QF⊥直线AC于点M
∴∠AEP=∠F=90°
(下面请你完成余下的解题过程)
②当点P在线段AB的延长线上运动时,(1)中的结论是否还成立?请在图2画出图形并说明理由.
(2)若将(1)中的“腰长为10cm的等腰直角△ABC”改为“边长为a的等边△ABC”时(其余条件不变),则线段DE的长度又如何?(直接写出答案,不需要解题过程)
(3)若将(2)中的“等边△ABC”改为“△ABC”(其余条件不变),请你做出猜想:当△ABC满足
查看习题详情和答案>>
①当点P在线段AB上运动时,线段DE的长度是否改变?若不改变,求出DE的值;若改变,请说明理由.
下面给出一种解题的思路,你可以按这一思路解题,也可以选择另外的方法解题.
解:过Q作QF⊥直线AC于点M
∵PE⊥AC于点E,QF⊥直线AC于点M
∴∠AEP=∠F=90°
(下面请你完成余下的解题过程)
②当点P在线段AB的延长线上运动时,(1)中的结论是否还成立?请在图2画出图形并说明理由.
(2)若将(1)中的“腰长为10cm的等腰直角△ABC”改为“边长为a的等边△ABC”时(其余条件不变),则线段DE的长度又如何?(直接写出答案,不需要解题过程)
(3)若将(2)中的“等边△ABC”改为“△ABC”(其余条件不变),请你做出猜想:当△ABC满足
∠A=∠ACB
∠A=∠ACB
条件时,(2)中的结论仍然成立.(直接写出答案,不需要解题过程)