摘要:(2)设△BPQ的面积为(cm2).求与的函数关系式,
网址:http://m.1010jiajiao.com/timu_id_754467[举报]
如图,在梯形ABCD中,,,,,点由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交于Q,连接PE.若设运动时间为(s)().解答下列问题:
(1)当为何值时,?
(2)设的面积为(cm2),求与之间的函数关系式;
(3)是否存在某一时刻,使?若存在,求出此时的值;若不存在,说明理由.
(4)连接,在上述运动过程中,五边形的面积是否发生变化?说明理由.
查看习题详情和答案>>
如图1,在四边形ABCD中,∠D=90°,BC∥AD.BC=20,DC=16,AD=30,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,运动时间为t(秒)
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,使得线段PQ与线段AB相交于点O,且2AO=OB;
(3)当t为何值时,使得PQ⊥BD;
(4)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形 查看习题详情和答案>>
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,使得线段PQ与线段AB相交于点O,且2AO=OB;
(3)当t为何值时,使得PQ⊥BD;
(4)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形 查看习题详情和答案>>
如图,已知在Rt△ABC中,∠B=90°,AB=BC=4cm,动点P从A向B运动,同时动点Q从B向C运动,其运动的速度均是1cm/s.设运动时间为t(s),请解答下列问题:
(1)设△BPQ的面积为S(cm2),求S与t的函数关系式,并求出自变量t的取值范围;
(2)若点R是AC的中点,连接PR、QR,试判断动点P、Q在运动过程中,△PQR的面积是否发生变化?若不变化,求出△PQR面积的大小;若变化,求出其变化过程中的最大值与最小值.
查看习题详情和答案>>
(1)设△BPQ的面积为S(cm2),求S与t的函数关系式,并求出自变量t的取值范围;
(2)若点R是AC的中点,连接PR、QR,试判断动点P、Q在运动过程中,△PQR的面积是否发生变化?若不变化,求出△PQR面积的大小;若变化,求出其变化过程中的最大值与最小值.