摘要:解答下列问题:.点C的坐标为(2.1).写出此时点B的坐标,(2)请你在图②中画出第二个叶片F2,的条件下.连接OB.由第一个叶片逆时针旋转180°得到第二个叶片的过程中.线段OB扫过的图形面积是多少?
网址:http://m.1010jiajiao.com/timu_id_744670[举报]
(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b=(
)2+(
)2=(
)2+(
)2-2
+2
=(
-
)2+2
,
又∵(
-
)2≥0,∴(
-
)2+2
≥0+2
,即a+b≥2
.
根据上述内容,回答下列问题:在a+b≥2
(a、b均为正实数)中,若ab为定值p,则a+b≥2
,当且仅当a、b满足 时,a+b有最小值2
.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥2
成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数y=
的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
查看习题详情和答案>>
对于任意正实数a、b,可作如下变形a+b=(
a |
b |
a |
b |
ab |
ab |
a |
b |
ab |
又∵(
a |
b |
a |
b |
ab |
ab |
ab |
根据上述内容,回答下列问题:在a+b≥2
ab |
p |
p |
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥2
ab |
(3)探索应用:如图2,已知A为反比例函数y=
4 |
x |
查看习题详情和答案>>
如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB重合部分的面积为S.
根据上述条件,回答下列问题:
(1)当矩形OEDC的顶点D在直线AB上时,求t的值;
(2)当t=4时,求S的值;
(3)直接写出S与t的函数关系式(不必写出解题过程);
(4)若S=12,则t= .
查看习题详情和答案>>
根据上述条件,回答下列问题:
(1)当矩形OEDC的顶点D在直线AB上时,求t的值;
(2)当t=4时,求S的值;
(3)直接写出S与t的函数关系式(不必写出解题过程);
(4)若S=12,则t=