摘要:9.如下图.在△ABC中.D为边AC上的一过点D画一条直线将△ABC分为两部分.使截得的三角形与△ABC相似.则这样的画法共有
网址:http://m.1010jiajiao.com/timu_id_743639[举报]
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201112/14/f66335fd.png)
如图,已知△ABC,①AB=AC ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.
显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)
已知:
求证:
证明:
“等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合”的定理是将“等腰三角形”作为一个不变的已知条件参与组合得到的三个真命题,在学习了等腰三角形的判定后,可将该定理作如下的引伸.
如图,已知△ABC,①AB=AC ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.
显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)
已知:________;
求证:________;
证明:________.
查看习题详情和答案>>
“等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合”的定理是将“等腰三角形”作为一个不变的已知条件参与组合得到的三个真命题,在学习了等腰三角形的判定后,可将该定理作如下的引伸.
如图,已知△ABC,①AB=AC ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.
显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)
已知:______;
求证:______;
证明:______.![精英家教网](http://thumb.zyjl.cn/pic2/upload/papers/20130926/201309261050243003453.png)
查看习题详情和答案>>
如图,已知△ABC,①AB=AC ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.
显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)
已知:______;
求证:______;
证明:______.
![精英家教网](http://thumb.zyjl.cn/pic2/upload/papers/20130926/201309261050243003453.png)
(2012•山西)问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.
探究展示:小宇同学展示出如下正确的解法:![](http://thumb.zyjl.cn/pic3/upload/images/201206/53/df44e6af.png)
解:OM=ON,证明如下:
连接CO,则CO是AB边上中线,
∵CA=CB,∴CO是∠ACB的角平分线.(依据1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)
反思交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:
依据2:
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
拓展延伸:
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.
查看习题详情和答案>>
探究展示:小宇同学展示出如下正确的解法:
![](http://thumb.zyjl.cn/pic3/upload/images/201206/53/df44e6af.png)
解:OM=ON,证明如下:
连接CO,则CO是AB边上中线,
∵CA=CB,∴CO是∠ACB的角平分线.(依据1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)
反思交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:
等腰三角形的三线合一(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合)
等腰三角形的三线合一(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合)
依据2:
角平分线上的点到角的两边的距离相等
角平分线上的点到角的两边的距离相等
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
拓展延伸:
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.