摘要:14.已知直线经过点A.则此直线的解析式是 .
网址:http://m.1010jiajiao.com/timu_id_738880[举报]
(2012•义乌市模拟)已知抛物线y=-
x2+2x与直线y=kx都经过原点和点E(
,
).
(1)k=
;
(2)如图,点P是直线y=kx(x>0)上的一个动点,过点P作x轴的垂线,垂足是点C,交抛物线于点B,过点B作x轴的平行线交直线y=kx于点D,连接OB;若以B、P、D为顶点的三角形与△OBC相似,则点P的坐标是
查看习题详情和答案>>
1 |
2 |
8 |
3 |
16 |
9 |
(1)k=
2 |
3 |
2 |
3 |
(2)如图,点P是直线y=kx(x>0)上的一个动点,过点P作x轴的垂线,垂足是点C,交抛物线于点B,过点B作x轴的平行线交直线y=kx于点D,连接OB;若以B、P、D为顶点的三角形与△OBC相似,则点P的坐标是
(
,
)或(7,
)或(1,
)
16 |
3 |
32 |
9 |
14 |
3 |
2 |
3 |
(
,
)或(7,
)或(1,
)
.16 |
3 |
32 |
9 |
14 |
3 |
2 |
3 |
24、阅读材料,解决问题.
小聪在探索三角形中位线性质定理证明的过程中,得到了如下启示:一条线段经过另一线段的中点,则延长前者,并且长度相等,就能构造全等三角形.如图,D是△ABC的AC边的中点,E为AB上任一点,延长ED至F,使DF=DE,连接CF,则可得△CFD≌△AED,从而把△ABC剪拼成面积相等的四边形BCFE.你能从小聪的反思中得到启示吗?
(1)如图1,已知△ABC,试着剪一刀,使得到的两块图形能拼成平行四边形.
①把剪切线和拼成的平行四边形画在图1上,并指出剪切线应符合的条件.
②思考并回答:要使上述剪拼得到的平行四边形成为矩形,△ABC的边或角应符合什么条件?菱形呢?正方形呢?(直接写出用符号表示的条件)
(2)如图2,已知锐角△ABC,试着剪两刀,使得到的三块图形能拼成矩形,把剪切线和拼成的矩形画在图2上,并指出剪切线应符合的条件.
查看习题详情和答案>>
小聪在探索三角形中位线性质定理证明的过程中,得到了如下启示:一条线段经过另一线段的中点,则延长前者,并且长度相等,就能构造全等三角形.如图,D是△ABC的AC边的中点,E为AB上任一点,延长ED至F,使DF=DE,连接CF,则可得△CFD≌△AED,从而把△ABC剪拼成面积相等的四边形BCFE.你能从小聪的反思中得到启示吗?
(1)如图1,已知△ABC,试着剪一刀,使得到的两块图形能拼成平行四边形.
①把剪切线和拼成的平行四边形画在图1上,并指出剪切线应符合的条件.
②思考并回答:要使上述剪拼得到的平行四边形成为矩形,△ABC的边或角应符合什么条件?菱形呢?正方形呢?(直接写出用符号表示的条件)
(2)如图2,已知锐角△ABC,试着剪两刀,使得到的三块图形能拼成矩形,把剪切线和拼成的矩形画在图2上,并指出剪切线应符合的条件.