摘要:在梯形ABCD中.AB∥CD.∠A=90°. AB=2.BC=3.CD=1.E是AD中点. 求证:CE⊥BE.
网址:http://m.1010jiajiao.com/timu_id_737263[举报]
在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2;对角线相交于O点,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转.
(1)当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明;
(2)在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值;
(3)当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=
时,求PE及DH的长.
查看习题详情和答案>>
(1)当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明;
(2)在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值;
(3)当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=
| ||
6 |
在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.对角线AC和BD相交于点O,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转.
(1)如图1,当三角板旋转到点E落在BC边上时,线段DE与BF的位置关系是 ,数量关系是 ;
(2)继续旋转三角板,旋转角为α.请你在图2中画出图形,并判断(1)中结论还成立吗?如果成立请加以证明;如果不成立,请说明理由;
(3)如图3,当三角板的一边CF与梯形对角线AC重合时,EF与CD相交于点P,若OF=
,求PE的长.
查看习题详情和答案>>
(1)如图1,当三角板旋转到点E落在BC边上时,线段DE与BF的位置关系是
(2)继续旋转三角板,旋转角为α.请你在图2中画出图形,并判断(1)中结论还成立吗?如果成立请加以证明;如果不成立,请说明理由;
(3)如图3,当三角板的一边CF与梯形对角线AC重合时,EF与CD相交于点P,若OF=
| ||
6 |