摘要:10.若点A(.).B(.)都在抛物线上.且.那么与的大小关系为
网址:http://m.1010jiajiao.com/timu_id_734502[举报]
抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x-7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQOC的面积为S.求S与t之间的函数关系式及自变量t的取值范围.
(3)对于二次三项式x2-10x+36,小明同学作出如下结论:无论x取什么实数,它的值都不可能等于11.你是否同意他的说法?说明你的理由.
查看习题详情和答案>>
抛物线的图像开口向上,与轴交于A、B两点(点A在点B的左边),
(1)求证:A、B两点都在轴的正半轴上;
(2)已知圆P(点P在第一象限)过A、B两点,且与轴相切,
①求圆心P点的坐标;(用含有的代数式表示)
②当时,圆Q与圆P、轴、轴都相切,若点Q在第一象限,求满足条件的圆心Q点的坐标.
查看习题详情和答案>>
设抛物线C的解析式为:y=x2-2kx+(
+k)k,k为实数.
(1)求抛物线的顶点坐标和对称轴方程(用k表示);
(2)任意给定k的三个不同实数值,请写出三个对应的顶点坐标;试说明当k变化时,抛物线C的顶点在一条定直线L上,求出直线L的解析式并画出图象;
(3)在第一象限有任意两圆O1、O2相外切,且都与x轴和(2)中的直线L相切.设两圆在x轴上的切点分别为A、B(OA<OB),试问:
是否为一定值?若是,请求出该定值;若不是,请说明理由;
(4)已知一直线L1与抛物线C中任意一条都相截,且截得的线段长都为6,求这条直线的解析式. 查看习题详情和答案>>
3 |
(1)求抛物线的顶点坐标和对称轴方程(用k表示);
(2)任意给定k的三个不同实数值,请写出三个对应的顶点坐标;试说明当k变化时,抛物线C的顶点在一条定直线L上,求出直线L的解析式并画出图象;
(3)在第一象限有任意两圆O1、O2相外切,且都与x轴和(2)中的直线L相切.设两圆在x轴上的切点分别为A、B(OA<OB),试问:
OA |
OB |
(4)已知一直线L1与抛物线C中任意一条都相截,且截得的线段长都为6,求这条直线的解析式. 查看习题详情和答案>>