摘要:25.如图:已知:∠BAG与∠AGD互补.∠l=∠2 试问:∠E与∠F相等吗?为什么?
网址:http://m.1010jiajiao.com/timu_id_731032[举报]
如图,已知正方形ABCD与正方形EFGH的边长分别是4
和2
,它们的中心O1,O2都在直线l上,AD∥l,EG在直线l上,l与DC相交于点M,ME=7-2
,当正方形EFGH沿直线l以每秒1个单位的速度向左平移时,正方形ABCD也绕O1以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变.
(1)在开始运动前,O1O2= ;
(2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD停止旋转,这时AE= ,O1O2= ;
(3)当正方形ABCD停止旋转后,正方形EFGH继续向左平移的时间为x秒,两正方形重叠部分的面积为y,求y与x之间的函数表达式. 查看习题详情和答案>>
2 |
2 |
2 |
(1)在开始运动前,O1O2=
(2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD停止旋转,这时AE=
(3)当正方形ABCD停止旋转后,正方形EFGH继续向左平移的时间为x秒,两正方形重叠部分的面积为y,求y与x之间的函数表达式. 查看习题详情和答案>>
如图,已知直线AB与CD相交于点O,OE、OF分别是∠BOD、∠AOD的平分线.
(1)∠DOE的补角是
(2)若∠BOD=62°,求∠AOE和∠DOF的度数;
(3)判断射线OE与OF之间有怎样的位置关系?并说明理由.
查看习题详情和答案>>
(1)∠DOE的补角是
∠AOE或∠COE
∠AOE或∠COE
;(2)若∠BOD=62°,求∠AOE和∠DOF的度数;
(3)判断射线OE与OF之间有怎样的位置关系?并说明理由.
(2007•临夏州)[(1)-(3),10分]如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2)--(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2)--(5)中,h1、h2、h3、h之间的关系;(直接写出结论)
(2)证明图(2)所得结论;
(3)证明图(4)所得结论.
(4)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:
查看习题详情和答案>>
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2)--(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2)--(5)中,h1、h2、h3、h之间的关系;(直接写出结论)
(2)证明图(2)所得结论;
(3)证明图(4)所得结论.
(4)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;图(4)与图(6)中的等式有何关系?